Movement Learning and Control for Robots in Interaction

Dr.-Ing. Michael Gienger
Honda Research Institute Europe
Carl-Legien-Strasse 30
63073 Offenbach am Main

Seminar Talk
Machine Learning Lab, University of Freiburg
July 24th, 2012
The Honda Research Institutes

- 3 institutes world-wide
- collaborating with scientific community
- broad research span: material science, genomics, intelligent systems, neuroscience …
- More information: www.honda-ri.com
Honda Research Institute Europe: Core Themes regarding Movement Generation

Skill Learning
- Learning by observation
- Physical teaching
- Explorative learning
- Open-ended skill acquisition

Movement Coordination
- Transient between MPs for sequential / parallel behavior
- Hierarchical organization
- Preparatory movements

Movement Representation
- Movement primitives (MP)
- Dynamical systems
- Reference frames
- Generalization

Dynamical Environments
- Error recovery
- Decision making
- Short- and long-term prediction

Human-Robot Interaction
- Physical, safe interaction
- Situation binding / context
- Cooperative tasks
- Intention recognition
1. Whole-body movement control

- Redundant control
- Task descriptors

2. Movement primitives

3. Optimal movements

4. Learning from demonstration
Redundant control: more degrees of freedom than controlled variables

Redundant velocity / acceleration control (Ligeois, Nakamura, Maciejewski, Siciliano...)
- Computation of joint displacements according to task- and nullspace motion
- Framework for position controlled robots

Redundant torque control (Khatib, Brock, ...)
- Approach using dynamic equations of motion
- Computation of joint torques
- Framework for torque controlled robots

Searching (planning) methods (Latombe, Kuffner, Khavraki ...)
- Computationally expensive (usually not real-time capable)
- Optimal solution can be found
- A-star, dynamic programming, ...
Rigid-body model of robot & environment represented as kinematic tree
- Parent-child hierarchy: parent influences movement of children
- Basis for all kinematic computation

Forward kinematics

Inverse kinematics
Kinematic task descriptors

- movement of a body with respect to another body
- is defined through the shortest paths to the root node
- for instance: hand-world, hand-heel, object, hand-hand, camera-object ...

Relative position: \(\mathbf{r}_{12} = \mathbf{r}_{02} - \mathbf{r}_{01} \)

Relative velocity: \(\dot{\mathbf{r}}_{12} = \dot{\mathbf{r}}_{02} - \dot{\mathbf{r}}_{01} + \omega_1 \times \mathbf{r}_{12} \)

… in joint coordinates: \(= A_{10} \left(0 J_{T,2} - 0 J_{T,1} + 0 \tilde{\mathbf{r}}_{12}^T 0 J_{R,1} \right) \dot{\mathbf{q}} = 1 J_{T,rel} \dot{\mathbf{q}} \)

- We can compute the movement of any object with respect to any other object
- We can express the movement in terms of the joint angles, velocities (also acceleration / torque)
Dynamic task descriptors

- Dynamic properties like linear and angular momentum can be formulated using kinematics.
- Linear projections into joint space can be computed by summing up over robot links.

Linear momentum

\[
\begin{align*}
 r_{cog} &= \frac{1}{m} \sum_{i=1}^{\text{bodies}} m_i r_{cog,i} \\
 \dot{r}_{cog} &= \frac{1}{m} \left\{ \sum_{i=1}^{\text{bodies}} m_i J_{T,cog,i} \right\} \dot{\mathbf{q}} = J_{cog} \dot{\mathbf{q}}
\end{align*}
\]

Angular momentum

\[
\begin{align*}
 L &= \sum_{i=1}^{\text{bodies}} m_i r_{cog,i} \times \dot{r}_{cog,i} + I\omega = \left\{ \sum_{i=1}^{\text{bodies}} m_i \ddot{r}_{cog,i} J_{T,cog,i} + I_i J_{R,i} \right\} \mathbf{q} = J_{an} \mathbf{q}
\end{align*}
\]
Whole-body control

Kinematic task descriptors
\[\dot{x} = f(t + \Delta t) - f(q) \]

Inverse Kinematics

Dynamic task descriptors

Redundant Control approach (Liegeois):
- Velocity control
- End effector movement described in task space
- Redundant nullspace used to satisfy additional criteria

Linear / angular momentum

Inertial task descriptors

Body shift

Cooperative balance control

Whole-body control

ZMP control
1. Reactive movement control

2. Movement primitives
 - How to compute the trajectories?

3. Optimal movements

4. Learning from demonstration
Movement Primitives – biological perspective

- Spinal system of frog encodes “force fields”
- Limb movement is summation of force fields
- Motor cortex encodes behavioral relevant movements (defense, prey-catching)
- Cortical output combines nearly linearly

Functional view

- Attractor dynamics
- Effector movements
- Behavioral relevant
 - high flexibility
 - good generalization
 - low complexity

References

- E. Bizzi, A. d’Avella, P. Saltiel, and M. Tresch: *Modular Organization of Spinal Motor Systems*
- C. Ethier, L. Brizzi, W. G. Darling, and C. Capaday: *Linear Summation of Cat Motor Cortex Outputs*
- T. Flash and B. Hochner: *Motor primitives in vertebrates and invertebrates*
- M. Graziano: *The organization of behavioral repertoire in motor cortex*
Movement Primitives – State of the art

Dynamical systems approaches (e.g. DMP: Schaal, Peters ...)
- autonomous differential equations
- attractor / periodic movements
- Local sensor feedback

Neural approaches (e.g. RNNPB Tani)
- layered recurrent neural network (RNN) representation
- primitives may be represented as attractors implicitly inside a RNN.

Probabilistic approaches (e.g. Billard)
- GMM / HMM representations
- movement generated by regression

Optimal control approaches (Bellmann, Jacobson, Todorov, Popovic ...)
- future prediction & anticipation
- local approaches are feasible for real-time
- computer graphics, now starting in robotics
Task-level attractor system

Whole body control

Task space

Attractor dynamics
Movement primitives – our approach

Movement primitives
- Attractor points similar to motor behaviour created by Movement Primitives
- Attractors are formulated in task-coordinates (hand positions, gaze direction, grasp angle ...)
- Attractors may be composed of different sets of variables
- Whole body motion is used to track trajectories
1. Reactive movement control

2. Movement primitives

3. Optimal movements
 - Attractor-based movement optimization: Anticipate a future time horizon

4. Learning from demonstration
Optimal attractor sequences

Formulation of trajectories as sequence of attractors

Cost function

\[C = \sum_{t=0}^{T-1} \left\{ \sum_i g_i(q_t) + \sum_i h_i(q_t, q_{t+1}) \right\} \]

- Reaching the target
- Joint limit avoidance
- Collision avoidance
- Postural similarity

Gradient-based optimization

\[\frac{dC}{dx^*} = \sum_{\text{children of } x^*} \frac{dC}{dy_i} \frac{\partial y_i}{\partial x^*} \]

- Minimal path length
- Speed at a certain point
...

Movement description: a set of weighted criteria

Collision avoidance

\[Q(q) = \sum_{i}^{\text{pairs}} g_p(d_{p,i}) + g_c(d_{p,i}, d_{c,i}) \]

Target precision

\[|\tilde{\phi}(q_T) - \hat{x}|^2 \]

Joint limit avoidance

\[\frac{1}{2} \sum_{i=1}^{\text{dof}} w_i (q_i - q_{0,i})^2 \]

Length of the movement in joint space

\[\sum_{t=1}^{T} (q_t - q_{t-1})^T W (q_t - q_{t-1}) \]

Similarity to teachers movement

\[c_{im}(t) = (\phi(q_t) - \hat{\mu}_i)^2 \cdot w_i \]

Others: Speed, energy efficiency, dynamics …
1. Reactive movement control

2. Movement primitives

3. Optimal movements

4. Learning from demonstration
 - Transfer skills from a human tutor
 - Acquire a model of the movement
 - Generalize observations towards a goal

Collaboration with CoR-Lab, Uni Bielefeld
Imitation Learning – our focus

Gesture imitation

„Replaying“ of demonstrators movements without understanding (e.g. gestures, dancing etc.)

Goal-directed imitation

Infering the goal of the movement (e.g. object handling / manipulation)

- **learning** of goal-directed object movement skills
- **representing** it independent from a concrete situation
- **imitating** it in novel situations using adaptation methods
- **Interaction** supports learning and imitation

Intention imitation

Understanding the goal of the demonstrator and possibly finding other ways to achieve it
Dynamic Movement Primitives (DMPs) represent discrete or rhythmic movements.

Generalization by inherent robustness of DMPs with respect to spatial and temporal perturbations.

Movement representation with Gaussian Mixture Models.

Generalization by exploiting variance of multiple demonstrated movements.

State of the art in robotics:

- [Calinon and Billard 2008]
 - Movement representation with Gaussian Mixture Models
 - Generalization by exploiting variance of multiple demonstrated movements

- [Ijspeert et al. 2003]
 - Dynamic Movement Primitives (DMPs) represent discrete or rhythmic movements
 - Generalization by inherent robustness of DMPs with respect to spatial and temporal perturbations

- [Nicolescu and Matarić 2006]
 - Problem of movement learning shaped into the problem of learning a state chart structure
 - Generalization by learning the skill as a coordination of predefined complex behaviors
Concept: Variance-based imitation

- Exploiting the statistics of a number of demonstrations
- Inter-trial variance as an importance measure:
 - Low variance → important for the task
 - High variance → less important for the task
- Movement may be different in less important parts → Improve other criteria: collisions, energy ...
Data acquisition
Stereo vision system
Projection into task spaces

Preprocessing
Dynamic Time Warping

Representation
Probabilistic encoding with Gaussian Mixture Models

Optimization
Optimization of attractor dynamics wrt. global cost function

Reproduction
Initialization of attractor dynamics

- Inter-trial variance from multiple demonstrations serves as importance measure
- Problem: different demonstrations may have different temporal properties \rightarrow inappropriate variance information
- Therefore: Dynamic Time Warping for temporal alignment

Temporal alignment of trajectories

Dynamic Time Warping (DTW) - temporal alignment

1. Calculate distance matrix
2. Recursive search of the minimal path
3. Indices of the minimal path define the transformation of one signal to match the other
Probabilistic representation of movements

Gaussian Mixture Models

\[p(x_i) = \sum_{k=1}^{K} p(k)p(x_i|k) \]

\[p(k) = \pi_k \]

Parameters \(\pi_k, \mu_k, \Sigma_k \) of all multivariate Gaussian components \(k \) define the GMM

\[p(x_i|k) = \mathcal{N}(x_i; \mu_k, \Sigma_k) \]

\[= \frac{1}{\sqrt{(2\pi)^D|\Sigma_k|}} \cdot e^{-\frac{1}{2}((x_i - \mu_k)^T\Sigma_k^{-1}(x_i - \mu_k))} \]

- Input: temporally aligned demonstrations
- Expectation Maximization training
- Bayesian Information Criterion based heuristic for estimating the number of Gaussians
Gaussian Mixture Regression (GMR)

- Extraction of the generalized (mean) movement and the according inter-trial variance information
- Any dimension(s) of the encoded movement data can serve as an input (here: the time dimension)
- Values of the remaining dimensions of the task space are interpolated, depending on the information encoded in the GMM

Next step:

- Initialization of the attractor dynamics [Toussaint, Gienger et al., 2007]
- Attractors are defined in the task space and are initialized with the mean movement of the GMR

We are not done!

- Attractor points do not necessarily reside on the actual trajectory
- Additional criteria not yet regarded
Optimization-based movement imitation

- Similarity of demonstrated movement is one out of several criteria
- Criterion weighted with variance

→ Imitation is „strong“ in phases with low variance, weak“ in phases with high variance
→ Robot’s limitations are considered

\[
\text{Movement curvature} = \sum_{t=1}^{T} (q_t - q_{t-1})^T W(q_t - q_{t-1})
\]

\[
\text{Target precision} = |\tilde{\phi}(q_T) - \hat{x}|^2
\]

Collision avoidance
\[
Q(q) = \sum_{i}^{\text{pairs}} g_p(d_{p,i}) + g_c(d_{p,i}, d_{c,i})
\]

Joint limit avoidance
\[
\frac{1}{2} \sum_{i=1}^{\text{dof}} w_i(q_i - q_{0,i})^2
\]

System imitates teacher as good as possible, but respects limitations such as collisions, joint limits, etc.

\[
c_{im} = (x_t - \hat{\mu}_t)^T W_t(x_t - \hat{\mu}_t)
\]
- Simple table scenario: human teaches robot to stack or put objects
- Interactive scenario – teacher interacts with robot to learn & imitate
- Pre-defined preparatory movements – combined with learnt ones
Human-robot interaction

3D object memory
- Fusion of sensor data to a 3D scene
- System’s mental image of the scene
- Basis for all subsequent processing

Tutor model
- Tutor’s kinematics modeled (average size human)
- 3D skin color blobs acquired by vision system
- Blobs assigned to hands and head of the model
- Posture estimated using inverse kinematics

Attention system
- Each object is associated with a saliency
- Saliency decays over time, and increases by making the object interesting to the robot
 - by shaking it
 - by pointing to it
- Robot tracks interesting objects

Movement segmentation
- Coherent hand-object movement is important
- Movement segmentation:
 - Hand is close to object
 - Hand and object have same velocity
- Start & stop thresholds avoid oscillations
- Movement is learnt independent of robot’s embodiment → in object coordinates
- Changing the topology of the model allows to generate the movement in different styles

Adapting the body schema allows to
→ create movements with different end effectors
→ create movement one-handed or bi-manual
→ deal consistently with collision avoidance etc.
Conclusions

Summary

- Whole body movement control
- Movement primitives
- Optimization of movement
- Imitation learning

Interesting future questions

- Relation of action and effects → the basis for inference
- Intuitive learning in interaction
- Integration of sensory modalities
- ...

24.07.2012
Thank you very much for your attention!